Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 7624, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494336

RESUMO

Eggerthella lenta is a prevalent human gut Actinobacterium implicated in drug, dietary phytochemical, and bile acid metabolism and associated with multiple human diseases. No genetic tools are currently available for the direct manipulation of E. lenta. Here, we construct shuttle vectors and develop methods to transform E. lenta and other Coriobacteriia. With these tools, we characterize endogenous E. lenta constitutive and inducible promoters using a reporter system and construct inducible expression systems, enabling tunable gene regulation. We also achieve genome editing by harnessing an endogenous type I-C CRISPR-Cas system. Using these tools to perform genetic knockout and complementation, we dissect the functions of regulatory proteins and enzymes involved in catechol metabolism, revealing a previously unappreciated family of membrane-spanning LuxR-type transcriptional regulators. Finally, we employ our genetic toolbox to study the effects of E. lenta genes on mammalian host biology. By greatly expanding our ability to study and engineer gut Coriobacteriia, these tools will reveal mechanistic details of host-microbe interactions and provide a roadmap for genetic manipulation of other understudied human gut bacteria.


Assuntos
Actinobacteria , Animais , Humanos , Actinobacteria/metabolismo , Bactérias/metabolismo , Eubacterium/metabolismo , Fatores de Transcrição/metabolismo , Sistemas CRISPR-Cas/genética , Mamíferos/metabolismo
2.
Nat Microbiol ; 7(10): 1605-1620, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36138165

RESUMO

Pharmaceuticals have extensive reciprocal interactions with the microbiome, but whether bacterial drug sensitivity and metabolism is driven by pathways conserved in host cells remains unclear. Here we show that anti-cancer fluoropyrimidine drugs inhibit the growth of gut bacterial strains from 6 phyla. In both Escherichia coli and mammalian cells, fluoropyrimidines disrupt pyrimidine metabolism. Proteobacteria and Firmicutes metabolized 5-fluorouracil to its inactive metabolite dihydrofluorouracil, mimicking the major host mechanism for drug clearance. The preTA operon was necessary and sufficient for 5-fluorouracil inactivation by E. coli, exhibited high catalytic efficiency for the reductive reaction, decreased the bioavailability and efficacy of oral fluoropyrimidine treatment in mice and was prevalent in the gut microbiomes of colorectal cancer patients. The conservation of both the targets and enzymes for metabolism of therapeutics across domains highlights the need to distinguish the relative contributions of human and microbial cells to drug efficacy and side-effect profiles.


Assuntos
Antineoplásicos , Escherichia coli , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Bactérias/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Fluoruracila/metabolismo , Fluoruracila/farmacologia , Humanos , Mamíferos , Redes e Vias Metabólicas , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...